
Improving DNS performance using “Stateless” TCP
in FreeBSD 9

David Hayes, Mattia Rossi, Grenville Armitage
Centre for Advanced Internet Architectures, Technical Report 101022A

Swinburne University of Technology
Melbourne, Australia

dahayes@swin.edu.au, mrossi@swin.edu.au, garmitage@swin.edu.au

Abstract—The introduction of DNSSEC and the increas-
ing adoption of IPv6 will tend to generate DNS responses
too large for standard DNS-over-UDP transport. This will
create pressure for clients to switch to TCP for DNS
queries, leading to a significant increase in overhead for
DNS servers. Huston has proposed a “stateless” version
of TCP to reduce the server-side load on DNS servers
handling DNS queries over TCP. Stateless TCP observes
that typical DNS-over-TCP queries may be adequately
handled by a simplified TCP connection establishment
that reduces the kernel state required per connection. We
have implemented our own version of statelessTCP under
FreeBSD 9 (FreeBSD’s current development branch at
the time of writing). This report discusses our selected
design and implementation, outlines the limitations of
other possible alternatives we chose not to implement,
and describes preliminary experimental results showing
that DNS-over-statelessTCP uses noticeably less server-side
resources than regular DNS-over-TCP.

I. INTRODUCTION

DNS clients have traditionally used DNS-over-UDP,
falling back to DNS-over-TCP when UDP based queries
were unsuccessful. Servers benefit from using UDP as
the transport for DNS queries because only a single UDP
socket is required to handle queries from everywhere.
In contrast, when clients connect via TCP the server
must establish and tear-down a new TCP socket per
query (with all the associated churn in kernel state),
and exchange additional packets during TCP connection
set up and tear down. (UDP is also easier for clients to
process, but they rarely generate more than a few queries
per second so the difference is insignificant.)

The drawback of DNS-over-UDP is that DNS re-
sponses must fit into a single UDP packet. The BIND 9
DNS server used in our experiments allows UDP re-
sponse packets to be limited to between between 512
and 4096 Bytes. However, most most DNS servers are
configured to allow only a maximum UDP packet size of

512 Bytes. If a query triggers a response exceeding the
maximum UDP packet size, a UDP packet containing
the “truncated response” flag will be sent to the client,
triggering a repeat query using DNS-over-TCP.

Using IPv6 and DNSSEC, the DNS response will
always exceed 512 Bytes. Increasing the maximum UDP
packet size to 4096 Byte, would allow such a response
to fit within a single UDP packet, but result in additional
problems:

• Firewalls and NAT boxes are known to drop DNS
UDP packets which are larger than 512 Bytes

• The UDP packet might be larger than the maxi-
mum transfer unit (MTU) along the path, and be
fragmented at IP level, which poses two additional
issues, one concerning IPv4 and IPv6, and one
concerning IPv6 only:

1) Firewalls and NAT boxes are known to drop
fragmented UDP packets, causing the UDP
based DNS response to be lost. Since UDP
does not perform lost packet recovery, the
client will reissue the request.

2) IPv6 does not support middle box fragmen-
tation, but relies on the transport protocol to
identify the path MTU and create packets of
a size that fits. If the transport protocol sends
a packet too large for an intermediate node, it
is dropped.

Using TCP would solve the issues of passing through
firewalls and NATs, but at the expense of greater re-
sources invested per query by the DNS server.

This report investigates our design and implementation
of a “stateless” version of TCP (which we refer to
as statelessTCP) within FreeBSD 9 (FreeBSD’s current
development branch at the time of writing). Our state-
lessTCP will allow DNS servers to efficiently respond to
TCP based DNS queries, using significantly less server

CAIA Technical Report 101022A October 2010 page 1 of 9

mailto:dahayes@swin.edu.au
mailto:mrossi@swin.edu.au
mailto:garmitage@swin.edu.au


resources than standard “stateful” TCP.
We incorporate Huston’s idea outlined in [1, 2] into

the FreeBSD 9 kernel TCP/UDP protocol stack. The
proposed modified TCP stack operates in a “stateless”
manner for basic DNS queries, and as standard “stateful”
TCP for other types of traffic and DNS axfr (zone
transfer) queries that require substantial responses.

We discuss Huston’s original userspace implementa-
tion of the idea in Section II, explain our selected design
in Section III discussing alternatives in Section IV. In
Section V we describe the implementation in FreeBSD
and provide a comparison between the server-side re-
sources used by DNS-over-statelessTCP, DNS-over-TCP
(regular TCP) and DNS-over-UDP in Section VI. We
discuss the possible employment of statelessTCP in the
real world in Section VII. We conclude in Section VIII.

II. SUMMARY OF THE ORIGINAL DNS-PROXY

In an attempt to mitigate the potential performance
issues for DNS servers, if clients need to use TCP as a
vehicle for requests instead of UDP, Huston proposed
a stripped down “stateless” TCP [1, 2]. To illustrate
the idea Huston has published some sample user-space
code [3] that implements a DNS proxy. The proxy
intercepts TCP based DNS queries, forwarding them
to the DNS server via a UDP socket and providing
appropriate responses to the TCP packets.

The basic operation of the proxy is shown in Algo-
rithm 1:

Algorithm 1 User-space DNS-Proxy algorithm outline
Capture every TCP packet arriving at port 53 and per-
form the following operations, using a raw socket:

1) If it is a TCP SYN packet, send back a TCP
SYN/ACK

2) If it is a TCP FIN packet, send back a TCP ACK
3) If it is a TCP DATA packet, proceed with Algo-

rithm 2
4) If it is none of the above packet types, drop the

packet

Algorithm 2 outlines how the DNS-proxy processes
TCP DATA packets arriving at port 53. This algorithm
is performed for each such packet.

A. FreeBSD stack implementation issues

While the DNS-proxy implementation outlined the
basic idea for a “stateless” TCP and proved to work,
the implementation in the FreeBSD kernel of such an

Algorithm 2 TCP-UDP-TCP translation implemented by
the DNS-proxy
For each incoming TCP DATA packet on port 53 perform
the following steps:

1) Create the IP response packet template:
• Use a random number for the IP ID field
• Set the TTL field to 255
• Initialise the checksum field to 0

2) Create the TCP response packet template:
• Set the acknowledgement number to the in-

coming sequence number + data length.
• Set the TCP ACK flag
• Set the window size to the maximum of 65535
• Initialise the checksum field to 0

3) Store the acknowledgement number of the incom-
ing packet. This is used as the sequence number
for outgoing packets.

4) Use the IP packet template, and TCP packet
template, add the checksum and send it without
payload as a TCP ACK, in order to prevent the
client to retransmit the packet.

5) Strip the first 2 bytes from the DNS query in the
TCP payload, which contain a length field not used
in UDP DNS query

6) Send the stripped TCP payload in over a UDP
socket to the DNS server

7) Listen on the socket and read the response into a
buffer

8) Add the length field to the DNS response at the
start of the buffer, as it is needed for TCP DNS
responses

9) Depending on the size of the response, create one
or multiple TCP packets:
• For the first TCP packet, set the sequence

number to the value stored at 3)
• For each additional packet, add the size of

the previous packets payload to the previous
packets sequence number and set the resulting
value as sequence number

10) Calculate and set the TCP and IP checksums and
send the packet(s)

CAIA Technical Report 101022A October 2010 page 2 of 9



idea is constrained by the stack only being able to transit
packets without waiting for responses.

In the example DNS-proxy implementation, the TCP
acknowledgement number (Algorithm 2, Item 2) and all
TCP and IP information is stored in a template for the
time the UDP DNS look-up is performed. As this is a
synchronous, blocking operation (Algorithm 2, Item 7),
information is preserved for the necessary time.

In the FreeBSD stack, the TCP and UDP layers receive
packets from the IP layer, process them and where
necessary pass them up via the socket interface to a
listening application. They also process data received
from the application and send the packets down to the
IP layer. All these operations are asynchronous and non-
blocking, and necessary information like TCP sequence
numbers and basic information like incoming source
address and port pairs and destination address and port
pairs (if multihomed) need to be stored, in order to allow
the TCP-to-UDP and UDP-to-TCP translation to work
asynchronously.

III. DESIGN OF STATELESSTCP

Our design attempts to implement the key elements
of [1] in the FreeBSD 9 stack allowing a TCP DNS client
to communicate with the DNS server, but have the server
receive the queries and send the requests via a UDP
socket. Unlike Huston’s DNS-proxy, which translates
TCP packets to UDP packets in user-space, we translate
the packets completely in kernel-space, passing only
UDP packets with DNS queries to the DNS sever which
runs in user-space. The same applies for UDP packets
generated by the DNS server – the translation to TCP
occurs completely in kernel-space. Figure 1 illustrates
the basic architecture.

A. TCP data as UDP

A DNS server needs to open a TCP port as well as a
UDP port to listen for DNS queries (this is the default
behaviour in BIND 9’s named server). DNS queries
received on the TCP port are handled by statelessTCP
in the kernel. StatelessTCP responds to TCP control
packets, but sends data packets to the application (often
named) via the UDP socket, created at initialisation by
the DNS server.

The protocol stack does not wait for a UDP response
from the application, so it is unable to easily map
the packet to TCP using a previously constructed TCP
template, as was possible in the DNS proxy example.
Instead it will need to be able to identify the response
sent by the application and redirect it to statelessTCP.

Fig. 1. TCP as UDP

The addresses and port numbers for the TCP segment
can be extracted from the UDP packet. The send se-
quence number could be set to ‘1’ for each packet, but
the acknowledgement number will need to match the
DNS query packet (See Algorithm 2, Item 2). State-
lessTCP will need to store this from the incoming TCP
packet in an identifiable way to be able to generate the
correct TCP headers for the response. The information
necessary to match the response UDP packet with the
query TCP packet are:

• source and destination addresses
• source and destination ports

In our design the UDP stack has to check outgoing
packets with a hash kept of statelessTCP connections. If
there is a match, the packet is rerouted via statelessTCP
with the necessary acknowledgement number. We use
the existing SYN cache for this purpose instead of
creating a new hash table. This stores more than the
minimum required information, but allows for the use
of random initial sequence numbers, and more “realistic”
TCP packets.

The resource usage is still low, as statelessTCP con-
nections do not require a per connection socket nor the
in pcb and tcb data structures.

B. Can zone transfers be catered for?

Many DNS servers run additional servers (slaves) for
backup, fallback and load distribution purposes, which
simply mirror the contents of the primary (master) DNS
server. For these purposes it is necessary to transfer
whole zones from one server to another. The amount
of data transferred usually exceeds the maximum UDP

CAIA Technical Report 101022A October 2010 page 3 of 9



packet size and needs to be transferred reliably, so TCP
is used as transport for the purpose1.

StatelessTCP uses the same protocol number and
listens on the same port as TCP, and will be presented
with zone transfers queries. We solve the problem by
“peeking” into the DNS query to determine whether it
is a zone transfer or not, and revert to “stateful” TCP if
it is.

IV. ALTERNATIVE DESIGNS

This section outlines some of the alternatives we have
looked at.

A. Pure Stateless

This idea aims to keep no state at all. The idea relies
on the ability to correctly construct a TCP response
packet based on the TCP packet just been received from
the client as follows:

• Source address = received destination address
• Destination address = received source address
• Source port = received destination port
• Destination port = received source port
• Sequence number = 1 for SynAck and 2 for data

response
• Acknowledgement number = received sequence

number + data length (or + 1 if it is a Syn or Fin)
• Use no TCP options
The above idea works well for responding to the Syn

packet, Fin packet, and acknowledging the data packet.
When the response comes back from the application (via
UDP or a special stateless socket2), all elements of the
TCP header can be filled in, except the acknowledgement
number.

For the TCP stack to store and recover the acknowl-
edgement number, it will need to be able to link the
outgoing DNS response with the correct acknowledge-
ment number for the DNS query packet. This problem
is solved in our design using the SYN cache (see
Section III).

1) Aside – sending an incorrect acknowledgement
number: An alternative to finding the correct acknowl-
edgement number is to use an incorrect acknowledge-
ment number. In FreeBSD, if the TCP stack receives a
packet that acknowledges data that has not been sent, in
the established and closing states, it will drop the packet

1Although the DNS protocol can be used to do this, other protocols
can also be used to achieve this outcome

2A special type of socket would require changes to the socket layer
and the DNS server application

accept filter If zone transfer

create state

Create state

Data

DNS server

TCP/

statelessTCP
UDP

Data

IP

Kernelspace

Userspace

First data pkt

Fig. 2. Idea 2: No TCB unless a zone transfer

and send an acknowledgement packet indicating the data
it is expecting.

B. TCP socket connections without TCP state

This idea attempts to provide a version of TCP
(stateless TCP) which has no TCP control block (tcb).
In addition, accept filters3 could be used to distinguish
between requests requiring full TCP, and those that can
operate with stateless TCP.

The main problem with this idea is that even though
the stateless TCP stack does not keep TCP state in
stateless mode, there is still quite a lot of state being
kept. A new socket will be needed for each connection,
thus having at least the overheads of a new socket with
the IP protocol control block (in pcb).

V. FREEBSD 9 IMPLEMENTATION OF STATELESSTCP

Our implementation of the design in section III uses
the SYN cache for connection look-ups.

A. Basic Algorithm

Figure 3 shows a message sequence chart of
the typical communication between the client
and the server (over TCP), and the inter-working
within the server’s kernel protocol stack between
TCP↔statelessTCP↔UDP. Stepping through the
sequence from top to bottom:

3Accept filters can sit between the TCP stack and the DNS
application. When a TCP connection is received, the accept filter
usually delays passing the information on to the listening application
until after the first data packet has been received.

CAIA Technical Report 101022A October 2010 page 4 of 9



1) BIND 9/named4, or another DNS server applica-
tion, is listening on both, the TCP and UDP ports
of the same port number.

2) The initial SYN – SYN/ACK exchange is handled
by the TCP stack. A syncache entry is created,
but no connection and state are established in the
server.

3) The ACK from the client is parsed by statelessTCP
and dropped.

4) The query from the client is redirected to state-
lessTCP, and the appropriate ACK is sent back
(this stops the client resending the same query if
the response is delayed).

5) If zone transfer detection is enabled (axfr detect),
the packet is inspected and if it’s an axfr query,
the packet is processed via normal TCP.

6) Otherwise, the query is repackaged as a UDP
packet and passed to the UDP stack, which for-
wards it to the application, in this case named.

7) The answer from named is redirected from the
UDP stack to statelessTCP.

8) The answer is segmented, if necessary, and sent as
TCP packets using the information that has been
stored in the syncache entry.

9) The last packet in the answer has the FIN flag set.
10) The client responds to the FIN closing its connec-

tion with a FIN/ACK – ACK exchange.
11) StatelessTCP removes the syncache entry

Placing the FIN on the last packet in the answer [see
item 9)] saves one TCP packet in the exchange. Alter-
natively, we could wait and respond with a FIN to the
Client’s FIN there will be one additional ACK returning
from the Client to ACK our FIN. The advantage of doing
that is that StatelessTCP could redirect multiple UDP
answer packets, however, named does not operate in this
way.

B. Configuration parameters

StatelessTCP defines the following system control
(sysctl) parameters shown with their defaults:

• net.inet.tcp.stateless.timeout: 3000
– statelessTCP lookup table timeout (ticks).

• net.inet.tcp.stateless.loglevel: 1
– statelessTCP logging level: 0 – no logging, 1

– log only errors, 2 – detailed log, 3 – very
detailed logging for debugging.

4Although we use BIND 9/named as an example, statelessTCP
changes the protocol stack not the DNS server application so any
DNS server application should work. Similarly for the client dig.

• net.inet.tcp.stateless.port: 53
– Port monitored for statelessTCP.

• net.inet.tcp.stateless.active: 0
– When this is not 0 statelessTCP is activated on

the port defined in net.inet.tcp.stateless.port.
• net.inet.tcp.stateless.axfr detect: 0

– When this is not 0 statelessTCP checks queries
to see if they are zone transfers. If they are it
allows them to operate over regular TCP.

In addition the following sysctl parameters may
need to be adjusted for the expected traffic load:

• net.inet.tcp.syncache.hashsize
• net.inet.tcp.syncache.cachelimit
• net.inet.tcp.syncache.bucketlimit

C. Changes to FreeBSD 9

The following is a summary of changes to files in the
FreeBSD 9 source tree:

• sys/conf/files

– netinet/statelesstcp.c optional
inet

• sys/netinet/tcp_input.c

– addition of calls to (statlesstcp input)
conditional on V tcp stateless and
V tcp stateless port

• sys/netinet/tcp_syncache.c

– changed declaration of syncache_drop
from a static so that statelesstcp can use it.

• sys/netinet/tcp_syncache.h

– added the flag definition
SCF_STATELESS_SYNINC 0x8000

• sys/netinet/udp_usrreq.c

– added call to statelesstcp_output in
udp_output conditional on V tcp stateless
and V tcp stateless port.

• sys/netinet/udp6_usrreq.c

– added call to statelesstcp_output in
udp_output conditional on V tcp stateless
and V tcp stateless port.

– added conditional skipping of the UDP check-
sum for redirections from statlesstcp.

• addition of netinet/statelesstcp.c
• addition of netinet/statelesstcp.h

VI. RESOURCE CONSUMPTION

We compare the performance of our statelessTCP
implementation with the performance for normal state-
ful TCP and UDP. Using dig, queries are generated

CAIA Technical Report 101022A October 2010 page 5 of 9



Client

DIG TCP

DNS Server

Stateless UDP

named
listening

named
listening

SYN

SYN/ACK

ACK

parse and
drop

Query

ACK

construct
UDP

Query

Answer

construct
TCP

Answer

Answer

Answer/FIN

ACK/FIN

ACK

clear
syncache

msc StatelessTCP

Fig. 3. Typical Client ↔ Server interaction with StatelessTCP

randomly from 5 hosts at total average rates of 50
queries/second up to 500 queries/second in steps of 50
queries/second. The CPU time consumed by each of the
kernel and named processes is measured over 20 ten-
second intervals. The additional memory used by TCP
and statelessTCP relative to UDP is then estimated based
on the stack control block. These tests use IPv4.

For performance tests we have adopted the following
configuration parameters:

• net.inet.tcp.stateless.timeout = 3000 (default)
• net.inet.tcp.stateless.loglevel = 0 (turn off logging)

• net.inet.tcp.stateless.port = 53 (default)
• net.inet.tcp.stateless.active: set to 1 for the stateless

tests, and 0 otherwise.
• net.inet.tcp.stateless.axfr detect: set to 0 for the

stateless tests, and 1 for the axfr detection test.
• net.inet.tcp.syncache.hashsize = 512 (default,

though a prime number is best)
• net.inet.tcp.syncache.bucketlimit = 30 (default)

CAIA Technical Report 101022A October 2010 page 6 of 9



50 100 150 200 250 300 350 400 450 500

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Average queries/second

C
P

U
 u

s
a
g
e
 i
n
 1

0
s
 i
n
te

rv
a
l

 

 

DNS over UDP

DNS over TCP
statelessTCP without axfr detection

statelessTCP with axfr detection

Fig. 4. Graph of the kernel CPU time for UDP, TCP, statelessTCP,
and statelessTCP with afxr detection tests against DNS query arrival
rates

A. CPU load

We measure CPU load in terms of the amount of
CPU time consumed over a ten second interval. Figure 4
shows the relative performance for the kernel process.
UDP has the least kernel load. Much of this is due
to that fact that UDP only processes two packets (one
in and one out), while TCP and statelessTCP usually
process about eight packets. At 500 queries/second TCP
takes 0.55 seconds of CPU time, statelessTCP 0.36, and
UDP 0.09 seconds. StatelessTCP consumes about four
times the kernel processing of UDP (roughly equivalent
to the increase in packets), while TCP consumes more
than six times the CPU time of UDP due to its increased
overheads. StatelessTCP with afxr detection only slightly
increases the kernel load. Detecting an afxr query type
requires a search to the end of the domain name in the
packet. The search is limited to 64 bytes, with these tests
having a 20 byte name.

Figure 5 shows the relative performance plot for
BIND 9’s ‘named’ DNS server. Firstly, note that UDP
and statelessTCP (with and without axfr detection) con-
sume the same named resources. Since statelessTCP
redirects packets via UDP, this is to be expected. TCP
consumes much more CPU resources than UDP and
statelessTCP. When named starts it creates a TCP lis-
tening socket. Since TCP is connection oriented, when
it accepts a TCP connection, an new socket is created
for the new connection. Comparing the CPU time used
by the kernel and that of named, it is evident that named
is where most of the CPU resources are consumed.

50 100 150 200 250 300 350 400 450 500

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Average queries/second

C
P

U
 u

s
a
g
e
 i
n
 1

0
s
 i
n
te

rv
a
l

 

 

DNS over UDP

DNS over TCP
statelessTCP without axfr detection

statelessTCP with axfr detection

Fig. 5. Graph of the named CPU time for UDP, TCP, statelessTCP,
and statelessTCP with afxr detection tests against DNS query arrival
rates

50 100 150 200 250 300 350 400 450 500

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Average queries/second

C
P

U
 u

s
a

g
e
 i
n
 1

0
s
 i
n

te
rv

a
l

 

 

DNS over UDP

DNS over TCP
statelessTCP without axfr detection

statelessTCP with axfr detection

Fig. 6. Graph of the total CPU time for UDP, TCP, statelessTCP,
and statelessTCP with afxr detection tests against DNS query arrival
rates

Of key interest is the total CPU resources consumed.
Figure 6 shows the combined CPU time for the ker-
nel and named processes. At the 500 queries/second
point UDP consumes 0.58 seconds of CPU time every
ten seconds, statelessTCP consumes 0.86 seconds (about
48 % more than UDP), and TCP consumes 2.13 seconds
(about 367 % more than UDP and 248 % more than
statelessTCP). Further the relationship between CPU
usage and queries/second is linear over the range tested.
This indicates that a DNS server processing TCP queries
with statelessTCP (with or without axfr detection) will

CAIA Technical Report 101022A October 2010 page 7 of 9



need to be about 50 % more powerful than its equivalent
processing UDP queries. A DNS server using regular
TCP to process DNS-over-TCP queries will need to
be up to four times more powerful than its equivalent
processing UDP queries.

B. Kernel memory use

Both TCP and statelessTCP use more memory re-
sources than UDP. For TCP the extra memory can be
estimated by the average number of concurrent TCP5

sessions, and the memory resources6 each session re-
quires. A similar estimate can be made for statelessTCP:

M ≈
(
sizeof(in pcb) + sizeof(tcb)

+ sizeof(reassembly queue)
)

≈
(
464 + 184 + sizeof(reassembly queue)

)
since the reassembly queue will be very small, say

≈ 648 Bytes

The additional memory for statelessTCP7:

M ≈ sizeof(syncache)

≈ 88 Bytes

Therefore we estimate that TCP requires more than
seven times the kernel memory of statelessTCP.

At 500 queries/second we measured a sampled maxi-
mum of 23 (average about 10) concurrent TCP sessions
and a sampled maximum of 22 (average about 10)
concurrent statelessTCP sessions. They should be about
the same for the same arrival rate.

C. Performance conclusions

These tests indicate that CPU usage is likely to be
the dominant issue for DNS servers in the move from
UDP queries to TCP queries. In our tests the user-space
DNS server (in our case, BIND 9’s named) consumes
the majority of the CPU resources, particularly when
TCP is the underlying transport. Table I summarises the
performance differences between UDP, statelessTCP and
regular TCP.

Most of statelessTCP’s gains over full TCP seem to
be due to its not requiring a new socket for every new
TCP connection. If sockets can be created and closed in
a more efficient manner, full TCP may see significant
performance gains. This is a potential area for further
study.

5This does not include local function variables, but stored state
6Assuming 32 bit pointers, 32 bit integers, and 32 bit longs
7Same assumptions as for TCP

Protocol increase of
CPU load

Bytes of extra
memory

UDP 0 % 0
statelessTCP 48 % 88
TCP 367 % 648

TABLE I
SUMMARY OF RESOURCE USAGE OF STATELESSTCP AND TCP

COMPARED TO UDP

VII. EMPLOYING “STATELESS” TCP IN THE REAL

WORLD

After having shown the performance boost obtained
using statelessTCP instead of regular TCP, we look
at issues concerning its potential deployment on DNS
servers in the Internet.

The rationale for StatelessTCP is that circumstances
arise where it might be impossible for UDP based DNS
responses to reach the client. However, it is currently
not common for DNS clients to fall back to TCP if their
UDP query fails. The DNS clients we tested fall back to
TCP only when they receive a DNS response over UDP
with the “truncated response” flag set8.

Because of this behaviour, if operators of DNS servers
would like to force clients to fall back to TCP, an
additional option needs to be added to statelessTCP.
Currently statelessTCP checks all UDP packets sent from
the DNS server, and redirects for statelessTCP operation
only those packets whose connection has been identified
in the TCP SYN cache. To force clients to fall back to
TCP for when responses are larger than 512 bytes, state-
lessTCP could check the size of UDP based responses
and rewrite them as “truncated response” packets when
they are larger then 512 bytes.

It is not clear how clients will behave in future. It
might be that, before IPv6 and DNSSEC will be widely
used, all firewalls will be updated and let large UDP
packets pass. This would make statelessTCP unneces-
sary in the long term, though potentially useful dur-
ing the transition. However, if market pressures instead
caused clients to switch to DNS-over-TCP anyway9,
statelessTCP could become an important tool in handling
the dramatic increase in server load this would produce.

8Observed by performing DNS lookups on MacOS X 10.6, Win-
dows XP SP3, Windows 7, FreeBSD 8.1 and Linux running a
glibc2 version 2.12.1. The client applications were Firefox 3.6 on
all platforms, and Safari and Internet Explorer 8 where available

9Perhaps as part of a regular patch or upgrade cycle

CAIA Technical Report 101022A October 2010 page 8 of 9



VIII. CONCLUSIONS

Driven by problems that exist in the current DNS
system for large DNS responses over UDP (as with
IPv6 and DNSSEC), Huston proposed “stateless” TCP.
We implement our own version of statelessTCP in the
FreeBSD 9 kernel.

Using BIND 9’s named under FreeBSD 9, we show
that TCP-based DNS queries required 365 % more CPU
than UDP-based queries. In contrast, our statelessTCP
implementation handles TCP-based DNS queries with
only 44 % more CPU than required to handle UDP-based
queries.

Further investigation is required to better understand
issues regarding when and how clients might fallback to
using TCP, and how statelessTCP may be augmented to
assist this transition.

ACKNOWLEDGEMENTS

This work has been made possible in part by grants
from APNIC Pty Ltd and Nominet UK, and collaboration
with Geoff Huston and Roy Arends.

REFERENCES

[1] G. Huston, “Stateless and dnsperate!” The ISP
Column, Nov. 2009. [Online]. Available: http:
//www.potaroo.net/ispcol/2009-11/stateless.pdf

[2] G. Huston, “Stateless and dnsperate!” Jan.
2010. [Online]. Available: http://www.potaroo.net/
presentations/2010-01-29-stateless-short.pdf

[3] G. Huston, “Dns proxy.” [Online]. Available:
http://www.potaroo.net/tools/useless/

[4] D. Karrenberg, “Measuring dns transfer
sizes - first results,” Feb. 2010. [On-
line]. Available: http://labs.ripe.net/Members/dfk/
content-measuring-dns-transfer-sizes-first-results

CAIA Technical Report 101022A October 2010 page 9 of 9

http://www.potaroo.net/ispcol/2009-11/stateless.pdf
http://www.potaroo.net/ispcol/2009-11/stateless.pdf
http://www.potaroo.net/presentations/2010-01-29-stateless-short.pdf
http://www.potaroo.net/presentations/2010-01-29-stateless-short.pdf
http://www.potaroo.net/tools/useless/
http://labs.ripe.net/Members/dfk/content-measuring-dns-transfer-sizes-first-results
http://labs.ripe.net/Members/dfk/content-measuring-dns-transfer-sizes-first-results

	Introduction
	Summary of the original DNS-proxy
	FreeBSD stack implementation issues

	Design of StatelessTCP
	TCP data as UDP
	Can zone transfers be catered for?

	Alternative designs
	Pure Stateless
	Aside -- sending an incorrect acknowledgement number

	TCP socket connections without TCP state

	FreeBSD 9 Implementation of StatelessTCP
	Basic Algorithm
	Configuration parameters
	Changes to FreeBSD 9

	Resource consumption
	CPU load
	Kernel memory use
	Performance conclusions

	Employing ``stateless'' TCP in the real world
	Conclusions

